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METNODS OF SIGNIFICANCE ARITHMETIC

N. Metropolis
Theoretical Division

Los Alamos Scientific Laboratory
be AhMKMi!, h?V*XiCO 87545

2.1 Introduction.

The ambition of significance arithmetic is to be able co specify

the standard deviations of computational results in the quite general

case where input quantities have quite disparate magnitudes and

accuracies. Many problems arising in the natural sciences are of this “

character, although too often &heir Initial data are idealized by

artificially extending their precision to that of the standard word.

A brief review of earlier developments: in its earliest form,

significancearithmetic (SA) utilized the one degree of freedom In the

computer representationef input quantities to exhibit their accuracy

to the nearest integer value. A set of algorithm were found for

addition (subtraction),multiplication and division that approximated

the properties of appropriately combining statistically independent

quantities. r~ctly representable quantities wl.re not distinguished;

they were siuIply in nomalized form. Later arithmetic rules were ex-

tanded so that such precise quantities constituted a special set and

●ach

from

Wre

result wasexsmined for truncation error and accordingly removed

the special set and henceforth regarded as an imprecise quantity.

recently, an axiomatic approach has been started based on equiva-

let,ce classes of integer strings witha boundedness condition [11.

We do not pursue that direction hers. Instead, the notion of non-inteeral

val”~es for the number of significant digits is introduced and developed.
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It will be

aaeocf.ated

a su’.tably

seen that this leads to a natural representation for the

variance of a computer quantity, wherein its exponent In

unnormslized form can be conveniently used as the exponent

of the variance. This fact simplifies the physical realization in colz-

puting the variance of results of the fundamental arithmetic?

operationa.

But for error correlations as a computation proceeds, the task of

the error-analyst would be complete. The nature of these correlations

is examined and auslytic techniques developed for coping with them.

For complicated and long sequences of arithmetical operations, a pro-

cedure is made available that reveals the correlations in an empirical

fashion. ‘A preliminary report la given of two applications—a simple
I

nonlinear, partial differential equation and matrix inversion.

2.2 Non-integral values of simificance and the role of varisnce.—. —— ——

me usual formof computer representation of =-normalized quanti-

*iea is x = 7e*f 5 (e,f), for integer exponent e and the coefficient

or fractional part f satisfying OC Ifl < 1. If x is an imprecise

quantity, and ax is the associated standard deviation, define the number

of significant digits of x aa the rounded integer of

(2.2.1) SX -log # o
x

Representation of x is not unique for x - (emf) is equal to

(e+a, 2-af) for integer a in, say, a binary computer. The ranfje of

a is such that no significant digits are loot on the right end of che

--
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A

etandard wordT(and, of

may be used to exhibit

with reference co some

usually near the right

.

course, on the left). This one-degree of freedom

the inteEer number of significant digits of x

fiducial bit position of f, call it k; it is

end of a standard word. The choice is optional.

but once selected for a problem it is considered fixed. A quantity in

this representation is said to be in significance form.

Assuming operands are statistically independent, one can establish

rcles far the representationof the result of addition (subtraction),

multiplicationand division of two quantities in significance, or unnor-

malized, form [2 ]. Such rules are, of course, limited to integer

values of significant digits.

Somewhat later, provision was made to accommodate

sentable operands [ 3], that were hitherto a source of

precieely repre-

possible awkward-
.

ness. Clearly if such

tion with an imprecise

the participants of an

an operand participates in an arithmetical opera-

one, the reeult 18 necessarily imprecise. If

operation are both precise, an examination is

still required to establish whether tht!result is preciee; the division

1 + 3 illustrate the case of imprecise result from precise inputs.

The question naturally arose whether one could achieve a more accu-

rato meaeure of significance by keeping track of the fractional part of

6X defined in (l). The idea would be to represent a quantity in signi-

ficance fore, i.e., with exponent and unnorndized fraction, together

with a third parts the fractional significance. Considerations of how

to men:lpulatethese fractional significance in arithnetlc prncesaee

made it clear that it would be more convenient to keep track of variancee

(in the eense of athtialics). Specifically, tha aeeociated vatiance

—— —

+ k iu the residence of tha leaet eigntficant digit of x.
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would be coupled to every operand; every arithmetic operation would

then involve a corresponding computation of the variance of the result,

with suitable approximationsand simplifications described below.

2.3 Rules for variances.—.

Let <x> = E(x2] - E*(x) represent the variance of x, where E is

expected value; {x,y} = 2(E(x,y) - E(x)E(y)) be the covariance of

x,y. If x,y are statistically independent, then the rules from simple
●

statistical considerationsare:
t

(2.3/L) addition: <X+Y> = <x> + <Y>

(2.3.2) multiplication: <xy)=x* <y> + y2 <x> +<xxy>

(2.3.3)
0

&
reciprocal:

x ‘$r{x} , (for <x> t X2)

where quantities outside the brackets me always mean values. The

assumption is made that <x) c X2, otherwise x has no significant digits.

‘2sx it is reasonable to neglect <x)(y) in (2.3.2)Since @/x2 = 2 ,

no approximations are made in (2.3.1); the neglection in (2.3.3) is of order

&>*/x’. For division, the last two rules are combined in an obvious

manner.

We remark that all numerical procedures should be monitored so that

the computation is interruptedwhenever ~ result has no significant

digits. Note that in that circumstance, the associated variance is

available for statistical considerations.

An important observation is that the above rules do not depend on

the detailed structure of the distributiml function associated with each
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0

operand, apart from the natural as~wmption that the first and second

wments exist.

2.4 Tvo representations.

Alternatives exist for the implementationof an arithmetic pro-

ceaor that would execute the coupled operationtiof the arithmetic

proper and of the variance computation. In the first instance operanda

would be represented in unnonnalized or significance form with appro-

priate algorithms [4 ]. In the eecond approach, the convlmtional

normalized form of arithmetic is available.

The advantage of the former is that the exponent of x = 2e-f

la simply related to the exponent of its variance. O?ecall that the

representation of x is related to the magnitude of its variance.) As

● consequence, the computer word need have only one expondnt instead

of two. Moreover, variance computation is nmre efficient iu this

form owing to fewer shift operations in the process of exponent

matching. If one were embarking on a new design of sn arithmetic pro-

saseorg this approach should be seriously considered.

Normalized forms for arithmetic are, howevert the more comon

approach and lend themselves to implementationby software. Hera the

couple operands would have their individual (not u.ecessarilyrelated)

exponents along with their respective fractional parts and the pair of

operations would be ●xecuted independently and presumably in new com-

puters, concurrently.

Algorithms for computing the fractional parts of variancea have

been developed for both unnormalized and normalized forms of arithmetic;
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.
the former has been implemented on the laboratory’sXANIAC computer

and the latter will be made available on one of the laboratory’s

commercial computers.

It is perhaps useful to consider a simple example, namely, that

of summing a set of uncorrelated, imprecise operands, where no restric-

tions are placed Qn the magnitud= or imprecision of the individual

summands. (The present writer is not aware of the existence of such

a sub-routine in any other computer library.) If S = Z(xis <XJ )

where x = 2e*f
i

~ is in significance form, then one orders the sum-

mands according to increasing exponent and adds them in turn accordingly,

together with a calculation of successive variances. The ordering is

desirable to avoid truncation on the right of the fractional part in a

finite computer register.

On the other hand, if xi is in normalized form, then it is the

variances that are ordered and the summing of x~ is perfGfmed in that

order.

2.5 Variance

The

function

nlficant

and significant digits

\-arianceof a result in addition, multiplication or division as a

of in,ut quantitie~ has a simple interpretation in terms of sig-

digits. Recall that x2/ <x> is related to the number of signi-

ficant digits of x; in fact 2
28*

= x2/ <x) in binary base.

In the addition proc.?ss, <x + y’}= <x> + ~) for statistically

independent X,Y. Let

(2.5.1) C-$+?. C>o
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that is, for c < 1, Sy z Sx; thus

(2.5.2) <W>=< x>(l+c $).

The two terms in the parentheses determine the contributionsof <x>

and ~> respectively to the variance of tke sum. lfc~l, and

X2 *
Y*, <x> * <y)

ttve to a variance of

2 < X2, then <x>and y

and the variance of the SUB has doubled, rela-

the input. On the other hand, if c < 1 (sy : Sx)

contributes relativdy mere than <y> to

<X+y>. In significance arithmetic, this corresponds to ex 7 e
Y

where ex, ey are the exponents of x,y in significance form, and it is

y that is shifted to the right to achieve exponnet ~tch.

In multiplication,write Eq. (2b) as

(2.5.3)

Since It

@,=.Q+*+**4*
Xy x Y x Y

is assumed that x,y have significant digits, the last term

on the right in (2.5.3) can be neglecteu. Thus the number of signi-

ficant digits of the product is determined primarily by the less

significant input in accordance with the rules originally proposed

for significance arithmetic [2 ]. For Sx * Sy, clearly s ~ Sx - JI.
Xy

Similarly, for division, a simple c,%lculationshows that

The comparison with Eq. (2.5.3) is interesting.

d

.,.

.4.
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2.6 Error correlation.—.

If there is no error correlation betwtienoperands the above rules

for computing variances would be reliable. Unfortunately, as a cal-

culation proceeds, the operands tend to have correlated errors. In

order to achieve reliable measures of variance, such correlations must

be recognized and taken into account. In a simple algorithm, its tree

structure may be examined in detail and a reliable version obtained.

As experience increases and more sophisticated techniques are developed,

more ambitious algorithms would become tractable. For very complicated

algorithms, there exists an empirical statistical technique that can

be applied to establish the extent of error correlation in the outp~t.

Moreover, if unacceptable amounts of correlation exist, then examina-

tion of intermediate quantities by the usual bisection of the program

code pinpoints the source of correlation and can be deait with. The

technique is called the method of reduced precision and is discussed

in the next section.

A simple example of error correlation occurs in forming d = ab + ac

where a,b,c are imprecise and statistically independent. Using either

of the two arithuwtics, one would find the appropriate value of <d> if

the computation were performed as d = a(b + c). On the other hand, if

the computation was performed as d = ab + ac, then from statistics we

know that

(2.6.1) @ = <ah) + Kc) + {ab,ac}.

Since
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(2.6.2) {ab,ac}=bc{a,a)m 2bc <a> ,

where, by our convention, quantities outside bracketa are expected

valuea. Thus the sum of the variances may not be a reliable measure

of <d> because of error correlation. Note that the deviation may be

of either sign according as the signs of b,c agree or disagree.

A second example of correlation (it occurs in the study of matrix

Inversion) is (~”) for x,y statistically independent. It can be

shown that

●nd further simplificationof ~/(*1)> can be achieved using the easily

derived relation (x/y> = <xy) /yb. Some additional ielations that

my be useful h studying error correlations are g?.ven in the appendix.

2.7 Method of reduced precis~o~—— —

In complicate algorithms, the nature and deteceion of error

correlation is lesp apparent. A method based on statistical perturba-

tions of the initial data is available end one studies the consequent

distributionsof the output values. The natural setting for this

method is the unnormalized form of operand representation that reveals

the number of significant digits. Recall that each input has its

least significant digit residing in the kth stage on the right of a

computer work, where k is optional but fixed througbut an algorithm.

The idea 1s the following. Neglecting all correlations, one computes
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● set of output

throughout, the

outputs;i and j

(x;) for the inputs (yf) using significance arithmetic

superscript indicating original inputs and corresponding

take om the necessary range of values. The inputs are

then statistically perturbed by adding : uniformly distributed random

variable to the inputs so that in effect the precision of each is re-

duced by a constant amount, say three or four binary digits. The per-

turbed inputs have their least significant digit residing in the k’

stage to the left of k. The inputs (Y;) produce (x;). Form

(2.7.1) +x:-x: for each i.

Repeat the computation m times to achieve a distribution of values

for A:, for each i, starting with (y~). If perturbed xi is free of

error correlation, then the distribution of Al is stron”~y peaked

about the k’ + 1 position. Mxe frequently, correlation does exist;

for positive correlation the peak of the distribution is to the left

of k’ + 1, and to the right for negative correlation. In a given

probJm, all three possibilitiesmay occur.

If error correlations are acceptably small.,no further study is

needed; otherwise two options are available. One can easily examine

A-distributions for intermediate quantities and pinpoint the source

of correlation and then either nmdify the program code to eliminate

that correlation, or to recognize its nature and USE appropriate

calculations of variances. The point is that the arithmetic processor

would treat, for example, the (correlated)step q = x/(y+x) as though

it were q’ = x/(y+z). In this simple case one can, of course, write

L...
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q - 1/(1 + (y/x)) and avoid correlation. Clearly, t~!erecan be

difficulties lf one tacitly asscmed <q’} = <q). liheperturbations

of the initial data is to find such pitfalls,

This simple example of the two forms x/(~) and l/(l+(y/x))

stimulates the remark that mathematically equivalent forms are not

always computatimall.y ‘~quivalentzhen dl~alingwith imprecise quantities.

T’.&method of reduced precision can, mutatis mutandis, also be

usetiin normalized arithmetic. Significance arithmetic has a distinct

advantage, however. Since its rules are based on uncorrelated errors,

they approximate very closely the corresponding calculations of variances.

Thus the method of reduced precision can dispense with such calculations

until correlations are detected and needed. Normalized arithmetic must

always include variance computationwhen using the method.

2.8 TWOpreliminary studies.—.

The coupling of variance computation with every arithmetic

operation has been attempted in two instances: a study of Burgers’

equation with inttial and boundary conditions having imprecise val.:.les;

a study of inversion of square matrices whose elements also have im-

precise values with no restrictions on the disparity in magnitudes

and imprecision of such values. The studies are ambitious ones and

we give only a preliminary report at this time.

Specifically, Burgers’ equation in one spac~ dtmension is

(2.8.1) +Uux-vu==o
‘t
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where u hae dimensions of velocity and the usual notation for (partial)

apace and time derivatives is adopted; and V IS the diffusivity coeffi-

cient. It is the simplest equation combining both nonlinear wave

propagation and diffusive effects. The initial condition is a wave

front dropping abruptly and continuously from uniformly high u-values

behind the front to low u-values in front? also uniform. Boundary

conditions at each end cortcspond to these uniform values respectively.

Several discretized versions have been investigated; the simplest re-

ceived most attention owing to

●re complicated enough and the

advantages. Specifically, the

the fact that the various interactions

others did not offer any compensating

difference equation is

(2.8.2)
n+l . J’ +* ($+1
‘~ ~

‘) - JX G(u;+l
- *$+ ’Jj-l 2AX - $1)

where Z = (UUj+l + q + $1 )/3 and At, Ax are time and space intervals

respectivelyand the superscripts and subscripts are time and apace

indices. The classical

of course observed.

Considar first the

stability conditions relating At and Ax are

unifom ragion behind the wave front. Initially,

etatiatical fluctuations about an equilibrium value are present: they

correspond to a certain imprecision in the initial data. The me~hod

of raduced precision showed a decrease in the variances associated with

u-values. ~~,atiS the rate of decrease? Since the first and second

apace differences are essentially zero, the effect of continued pro-

cessing of Eq. (12) at point j is to take sums of the initial, statistical
i

fluctuations from a larger nuubcr of neightming points surrounding the
g
:
q

~
wJ

?
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.
the point j. Thie number increasee linearly with n. The ausming

process is similar to the esthetes, Sk, of the mean of a distribu-

tlcn; thera it is well ‘hm.% that gk w U?/k where k is the size of

the sample and U* is the variance of the original distribution. Hence

a measure of the decreasing variance of Ua in uniform
j

available.

A more interesting obsetwation was the effect of

regions is

the wave f~ont

passing through a region, wherein the u-values rise from some low

value to some higher (uniform) one. In the region, say around point

j, of the wave front, the variance of that u-value increases with time

to a maximum and then decreases to its original value. Although the

~ave front being considered is not a shock wave, it is suggested that

the increased variance be associated with an increase of ent~opy, a

behavior well known in shock waves. If the variance of v is greater

than that of u, the profile of the variances of u across the wave front

exhibits a bimodal shape. The decrease at the center is connected with

the fact that the second space difference of u has a minimum there. If

the variance of V is smull relative to that of u, the profile becomes

unlnmdal and persists even as <V> + O. Study is continuing to establish

the nature of the dependence of <u> across the wave front. A likely

candidate is the second space difference of u, possibly multiplied by

u itself.

The second application is to inversion of a real, square uatrix with

elementtiof arbitrary magnitudes and significance. The discussion ic

limited to the 3 x 3 case. Our purpose is to study the nature of the

correlationsbetween the cofactora of the determinant iiithe algorithm of

:;
s
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interest. A tractable solutiolfis found; it is clear how the analysis

could be extended to 4 x 4 matrices, but the combinatorial complexity

is great.

The algorithm studied is the classic

-1
aij = a~i/D, where a$i is the cofactor at

expanded by either the i
th th

row or the j

one where the inverse element

j,i and D is the determinant

column. For each a~~ there
iJ

are six covariances to evaluate.
lf a;i

= (UV +wx), two of the six

are

~{

w
(2.8.3) {UV:WS Uv:mj’— —-—

-+!lV+wx’uv+wx

and four are permutations of

{

w
(2.8.4) u — }Uv+wx’uv+wx’

where the numerators select one member from each of the product pairs;

uncorrelated factors have been suppressed.

The two covariances in (2.8.3) are exactly zero. Expllcit ex-

pressions have been found for the remaining four given in (2.8.4) in

terms of the individual variances of U,V,W,X. It turns out that if

U,V,W,X are approximately of the same magnitude then the covarianc.es

are small compared to variances and approach zero as equality IL

achieved, Finally (’a~~) is given by the sum of these four covariances

and the four variances, of which <u/(uv + wx)> is typical. (Further

study may disclose that the covariances here make only small contributj,on



Appendix

Some easily derived relations for

are:

statistically independent variables

1.

2.
(

l\=
Xy+z I (Xyi:) “ (<V> + <z>)

3. ()
x =

.F*7 (xAZ) 4
(x” <y> + <xZ>)
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